一、项目介绍:
通过摄像头实时识别人物的表情信息,包含5种表情信息:’neutral’, ‘happy’, ‘sad’, ‘surprise’, ‘anger’
二、环境安装
- 平台:windows 11
- 编译器:pycharm
- cuda 11.3
- cudnn 8.2.0.53
conda create -n emotion python=3.8
conda activate emotion
pip install opencv-python
pip install openvino -i https://mirror.baidu.com/pypi/simple
三、执行代码
执行main.py文件
四、核心代码
import cv2 as cv
import numpy as np
from openvino.inference_engine import IECore
# 人脸检测&表情识别
def emotion_detect(frame):
# 人脸检测模型
weight_pb = "opencv_face_detector_uint8.pb"
config_text = "opencv_face_detector.pbtxt"
# 加载表情识别模型并设置输入与输出
model_xml = "emotions-recognition-retail-0003.xml"
model_bin = "emotions-recognition-retail-0003.bin"
labels = ['neutral', 'happy', 'sad', 'surprise', 'anger']
ie = IECore()
emotion_net = ie.read_network(model=model_xml, weights=model_bin)
input_blob = next(iter(emotion_net.input_info))
exec_net = ie.load_network(network=emotion_net, device_name="CPU", num_requests=2)
# 读取人脸检测模型
net = cv.dnn.readNetFromTensorflow(weight_pb, config=config_text)
h, w, c = frame.shape
blobImage = cv.dnn.blobFromImage(frame, 1.0, (300, 300), (104.0, 177.0, 123.0), False, False)
net.setInput(blobImage)
cvOut = net.forward()
# 绘制检测矩形
for detection in cvOut[0, 0, :, :]:
score = float(detection[2])
if score > 0.5:
left = detection[3] * w
top = detection[4] * h
right = detection[5] * w
bottom = detection[6] * h
# roi 和 关键点检测
y1 = np.int32(top) if np.int32(top) > 0 else 0
y2 = np.int32(bottom) if np.int32(bottom) < h else h - 1
x1 = np.int32(left) if np.int32(left) > 0 else 0
x2 = np.int32(right) if np.int32(right) < w else w - 1
roi = frame[y1:y2, x1:x2, :]
image = cv.resize(roi, (64, 64))
image = image.transpose((2, 0, 1)) # Change data layout from HWC to CHW
res = exec_net.infer(inputs={input_blob: [image]})
prob_emotion = res['prob_emotion']
probs = np.reshape(prob_emotion, 5)
txt = labels[np.argmax(probs)]
cv.putText(frame, txt, (np.int32(left), np.int32(top)), cv.FONT_HERSHEY_SIMPLEX, 1.0, (255, 0, 0), 2)
cv.rectangle(frame, (np.int32(left), np.int32(top)),
(np.int32(right), np.int32(bottom)), (0, 0, 255), 2, 8, 0)
# print(txt)
return txt
# 将每一帧写入输出文件
out.write(frame)
# cv.imshow("emotion-detect-demo", frame)
# 按Q 退出 waitKey控制播放速度
if cv.waitKey(1) & 0xFF == ord('q'):
break
if __name__ == "__main__":
#
# 1、 调用摄像头
# cap = cv.VideoCapture(0)
# 2、打开视频
path = "dance.mp4"
cap = cv.VideoCapture(path)
while True:
ret, frame = cap.read()
if ret is not True:
break
emotion_detect(frame)
# 显示帧(可选)
# cv.imshow('frame', frame)
# 按Q 退出 waitKey控制播放速度
if cv.waitKey(1) & 0xFF == ord('q'):
break